DETERMINATION OF THE MAIN PARAMETERS OF AN ASYNCHRONOUS TRACTION ELECTRIC MOTOR OF AN AC ELECTRIC LOCOMOTIVE OF THE “UZ-EL” SERIES
DETERMINATION OF THE MAIN PARAMETERS OF AN ASYNCHRONOUS TRACTION ELECTRIC MOTOR OF AN AC ELECTRIC LOCOMOTIVE OF THE “UZ-EL” SERIES
Tulagan Nazirkhonov
Cand. those. Sciences, Acting Associate Professor, Tashkent State Transport University,
Uzbekistan, Tashkent
Akil Ziyamukhamedov
Senior Lecturer, Tashkent State Transport University,
Uzbekistan, Tashkent
ОПРЕДЕЛЕНИЕ ОСНОВНЫХ ПАРАМЕТРОВ АСИНХРОННОГО ТЯГОВОГО ЭЛЕКТРОДВИГАТЕЛЯ ЭЛЕКТРОВОЗА ПЕРЕМЕННОГО ТОКА СЕРИИ “UZ-EL”
Назирхонов Тулаган Мансурхон угли
канд. техн. наук, и.о. доц., Ташкентский государственный транспортный университет,
Узбекистан, г. Ташкент
Зиямухамедов Акил Тулкунович
старший преподаватель, Ташкентский государственный транспортный университет,
Узбекистан, г. Ташкент
ABSTRACT
Determining the parameters of an asynchronous traction motor is necessary to create a computer simulation model that allows you to reproduce electromagnetic processes in the traction electric drive and converters, as well as the processing functions of the obtained simulation results, adequate to the real conditions of use on electric rolling stock of converters with various control algorithms in traction and regenerative braking modes. To determine the parameters of an asynchronous traction motor in relation to the t - shaped equivalent circuit, the idle, short circuit and rated load modes are used using the method of loss separation in the motor. A method is proposed for calculating the parameters of an asynchronous traction motor based on the design modes of idling and short circuit using the loss separation method. The main design parameters and electrical quantities characterizing the operating modes of the asynchronous traction motor of the SEA-107E series of the electric locomotive of the O'Z-EL series are given. The results obtained can be used in a computer simulation model designed to reproduce electromagnetic processes in a traction electric drive and converters, when determining the energy characteristics of an electric locomotive of the O'Z-EL series .
АННОТАЦИЯ
Определение параметров асинхронного тягового электродвигателя необходимо для создания компьютерной имитационной модели, позволяющей воспроизводить электромагнитные процессы в тяговом электроприводе и преобразователях, а также функции обработки полученных результатов моделирования, адекватные реальным условиям применения на электрическом подвижном составе преобразователей с различными алгоритмами управления в режимах тяги и рекуперативного торможения. Для определения параметров асинхронного тягового электродвигателя применительно к т - образной схеме замещения используются режимы холостого хода, короткого замыкания и номинальной нагрузки с помощью метода разделения потерь в двигателе. Предложен способ расчета параметров асинхронного тягового электродвигателя на основании расчетных режимов холостого хода и короткого замыкания с применением метода разделения потерь. Приведены основные расчетные параметры и электротехнические величины, характеризующие режимы работы асинхронного тягового электродвигателя серии SEA-107E электровоза серии «O’Z-EL». Полученные результаты могут быть использованы в компьютерной имитационной модели, предназначенной для воспроизведения электромагнитных процессов в тяговом электроприводе и преобразователях, при определении энергетических характеристик электровоза серии «O’Z-EL».
Keywords: Asynchronous traction motor, method for calculating parameters, active and inductive winding resistances.
Ключевые слова: Асинхронный тяговый электродвигатель, метод расчета параметров, активные и индуктивные сопротивления обмоток.
Asynchronous electric motors are widely used in the traction drive of rail transport due to greater reliability and lower manufacturing and operating costs compared to collector motors.
Six -axle AC electric locomotives of the O'Z-EL series ( Figure 1 ) are designed taking into account the latest trends in the field of electric locomotive construction. The characteristic features of an electric locomotive include the use of an asynchronous traction electric drive, traction converters based on IGBT transistors, axis-by- axis regulation of traction and braking force, and a microprocessor control system [1].
Figure 1. Electric locomotive O'Z-EL
The use of an asynchronous traction motor as a traction motor is impossible without a semiconductor converter. In this case, the shape of the voltage and current of the stator winding is far from sinusoidal.
Currently, there is an urgent problem of increasing the energy efficiency of railway transport, which is associated with an increase in the energy performance of electric rolling stock (ERS). An important step in this direction is the creation of a computer simulation model that makes it possible to reproduce electromagnetic processes in the traction electric drive and converters, as well as the functions for processing the obtained simulation results, which are adequate to the real conditions for using converters with various control algorithms in traction and regenerative braking modes on ERS.
The parameters and energy characteristics of traction converters and traction motors have an unambiguous relationship in terms of voltage level, switching frequency of power electronic devices, and current ripples.
On electric locomotives of the O'Z - EL series , the traction converters are based on two-level autonomous voltage inverters (AVI). Diagrams of phase and linear voltages, as well as phase current with a 180-degree control algorithm are shown in Figure 2 .
Figure 2. Diagrams of phase and linear voltages, as well as phase current
The effective line-to-line voltage applied to the motor windings under 180-degree inverter control is 81.5% of the inverter supply voltage (input filter voltage AIN). The electromagnetic moment of an asynchronous traction motor is created by the main harmonics of the magnetic flux and rotor current. The shape of the curves of the magnetic flux and current with a 180-degree AVI control algorithm is far from sinusoidal. The effective value of the fundamental harmonic of the line voltage supplied to the asynchronous traction motor is 0.78 [2;3] .
The regulation of the voltage supplied to the asynchronous traction motor is carried out by pulse-width modulation of the control of the current-conducting intervals of the power switches of the AIN.
The sinusoidality of the shape of the magnetic flux and the stator current is achieved by using the AVI control algorithm with sinusoidal pulse-width modulation. In this case, the effective value of the fundamental harmonic of the linear voltage supplied to the windings of the asynchronous traction motor is only 0.61 . When using an improved control algorithm AVI with space-vector pulse-width modulation, the effective value of the fundamental harmonic of the line voltage is 0.7 [4] .
Experimental determination of the parameters of the windings of an asynchronous traction motor is in most cases hampered by the technical conditions for the implementation of test modes. Analytical determination of the parameters of an asynchronous traction motor - active resistance and leakage inductance of the windings, the magnitude of mechanical losses and losses in steel can be performed based on the idle and short circuit modes using the loss separation method in the rated load mode.
The resistance of the stator phase windings in this case is determined by the power loss in copper at rated load, (Ohm)
where is the stator phase current in the nominal mode [4]. |
(1) |
Let's determine the power loss in the copper of the stator at rated load by the formula (W)
(2) |
where is the slip of the rotor in the rated load mode, is the power of the rated mode, is the efficiency factor (COP) of the rated mode, is the power of losses in the stator steel in the rated load mode, is the power of mechanical losses in the rated load mode, is the power of additional losses in copper stator due to spatial harmonics of the stator current [4].
The power of mechanical losses in the rated load mode can be taken as W [5], the power of additional losses from spatial harmonics of the current W [5].
The calculation of the main parameters of the asynchronous traction motor SEA-107E used on electric locomotives O'Z-EL is carried out. Passport data, design parameters and electrical values characterizing the operating modes of the SEA-107E asynchronous traction motor , are given in Tables 1 and 2 [4].
Table 1.
Passport data of asynchronous traction motor SEA-107E
Options |
Designation |
Meaning |
Rated power, kW |
1250 |
|
Rotation frequency, rpm |
1350 |
|
Rated line voltage, V |
2150 |
|
Rated current, A |
390 |
|
Power factor at 100% load |
0.85 |
|
efficiency |
0.95 |
|
Rated stator current frequency, Hz |
46 |
|
Number of pole pairs |
2 |
|
Rated rotor slip |
0.01 |
Table 2.
Design parameters and basic electrical values of the asynchronous traction motor SEA-107E
Parameters and data |
Designation |
Meaning |
Power loss in stator copper at rated load, W |
28 108 |
|
Power of mechanical losses in the mode of rated load, W |
2645 |
|
Power of additional losses from spatial current harmonics, W |
6613 |
|
Power loss in steel in ¾ rated load mode, W |
15 542 |
|
Power loss in rotor copper at rated load, W |
18 310 |
|
Stator phase winding resistance, Ohm |
0.062 |
|
Rotor resistance reduced to stator phase resistance, Ohm |
0.045 |
|
Multiplicity of the greatest electromagnetic moment |
1.9 |
|
Short circuit impedance, Ohm |
0.454 |
|
Short circuit inductive reactance, Ohm |
0.441 |
|
Inductive reactance of leakage flows of the stator phase, Ohm |
0.245 |
|
Rotor leakage inductive resistance, reduced to the stator phase, Ohm |
0.196 |
|
Stator phase leakage inductance, H |
0.0008478 |
|
Leakage inductance of the rotor phase, reduced to the stator phase , H |
0.0006782 |
|
Engine phase impedance in idle mode , Ohm |
11.211 |
|
The coefficient of reduction of the parameters of the windings to the L-shaped equivalent circuit |
1.023 |
|
Rotor current reduced to stator current for rated load mode, A |
374 |
|
Idle mode current, A |
110.7 |
|
Active component of the no-load current of the stator phase, A |
6,863 |
|
Magnetization current of the stator phase, A |
110.5 |
|
Inductive resistance of mutual inductance of the windings of the stator and rotor phases, Ohm |
10.987 |
|
Mutual inductance of the stator and rotor, reduced to the stator (magnetizing inductance) , H |
0.038 |
Conclusion
A method is proposed for calculating the parameters of an asynchronous traction motor based on idling and short circuit experiments using the loss separation method in the rated load mode. Analytical expressions are obtained for calculating the parameters and the main characteristic data of an asynchronous traction motor in relation to a t-shaped equivalent circuit. The main design parameters and electrical quantities characterizing the operating modes of the asynchronous traction motor of the SEA-107E series of the electric locomotive of the O'Z-EL series are given.
References:
- Vikulov I.P. Comparative analysis of the technical characteristics of electric locomotives of the "O'Z-ELR " and "O'zbekiston" series / I.P. Vikulov, T. M. Nazirkhonov // Izv. Petersburg. University of Communications. - St. Petersburg: PGUPS, 2019. - T. 16. Issue .1. - S. 68-76.
- Nazirkhonov T. M., Yakushev A. Ya., Vikulov I. P. Analysis of the spectral composition of the input current and voltage 4q-s of the converter of the AC electric locomotive of the O'Z-ELR series using a computer simulation model // Bulletin of the results of scientific research . - 2020. - Issue . 3. - S. 41-63.
- Nazirkhonov T. M. Simulation model 4 q - s of an AC electric locomotive converter with an asynchronous traction motor of the O'Z-ELR series / T. M. Nazirkhonov / Resource -saving technologies in railway transport / - Tashkent: Tashkent. Institute of Railway Engineers transport, 2019. - S. 52 - 54.
- Yakushev A. Ya., Nazirkhonov T. M., Vikulov I. P., Markov K. V. Determination of the main parameters of an asynchronous traction motor. - St. Petersburg: PGUPS, 2019. - T. 16, no . 4. - S. 592-601.